Mathematics Properties

$\mathrm{a}=\mathrm{a}$	If something is equal to its identical twin	Reflexive Property
$\mathrm{a}=\mathrm{b} \& \mathrm{~b}=\mathrm{a}$	If something flipped sides of the equal sign	Symmetric Property
$\mathrm{a}=\mathrm{b}, \mathrm{c}=\mathrm{b}$ so $\mathrm{a}=\mathrm{c}$	If two items are equal to a third item, the two are equal	Transitive Property
$a+b=b+a$	If you reversed the order of addition or multiplication	Commutative Property
$a+(b+c)=(a+b)+c$	If you changed a grouping rearranged parenthesis, but kept everything else in the same order	Associative Property
If $a=b$ then $a+c=b+c$	If you added the same non-zero \# to both sides	Addition Property
If $\mathrm{a}=\mathrm{b} \mathrm{ac}=\mathrm{bc}$	If you multiplied the same nonzero \# to both sides you have used the	Multiplication Property
$a+0=a$	If you added 0 to get the same \# back	Additive Identity
(a) $1=a$	If you multiplied by 1 to get the same \# back	Multiplicative Identity
$a+(-a)=0$	If you added opposite \#'s and ended with 0	Property of Opposites
(b) $1 / b=1$	If you multiplied by a reciprocal to get 1	Property of Reciprocals
$\begin{aligned} & a(b+c)=a b+a c \\ & q r+r s=(q+s) r \end{aligned}$	If you multiplied a \# into or pulled a \# out of parenthesis	Distributive Property
(a) $0=0$	If you multiplied by 0 and got 0	Multiplication Property of 0
$W(-1)=-w$	If you multiplied by (-1) and got the opposite of what you started with	Multiplicative Property of (-1)
	If you have stated that $\mathrm{a}<\mathrm{b}, \mathrm{a}=\mathrm{b}$ or $\mathrm{a}>\mathrm{b}$	Comparison Property
$\begin{aligned} & a<b, c \text { is }+ \text {, then } \\ & a c<b c \end{aligned}$	If you multiplied an inequality by a positive \# and maintained the inequality	$1^{\text {st }}$ Multiplication Property of Order
$\begin{aligned} & a<b, c \text { is }- \text {, then } a c \\ & >b c \end{aligned}$	If you multiplied as inequality by a negative \# and reversed the inequality	$2^{\text {nd }}$ Multiplication Property of Order
$\begin{aligned} & a+c=b+c \text { then } \\ & a=b \end{aligned}$	If you cancelled the same quantity from both sides of an equation (by subtracting)	Cancellation Property of Addition
$\mathrm{ac}=\mathrm{bc}$ so $\mathrm{a}=\mathrm{b}$	If you cancelled the same nonzero quantity from both sides of an equation (by division)	Cancellation Property of Multiplication
$\begin{aligned} & a b=0 \text { if } a=0 \text { or } \\ & b=0 \end{aligned}$	If a product is zero, so you know that one of the factors has to be zero	Zero Product Property
$\mathrm{a} / \mathrm{b}=(\mathrm{a})^{1} / \mathrm{b}$	If you changed a division to multiplication by a reciprocal	Definition of Division
$a+(-b)=a-b$	If you have switched from adding a negative to just subtraction, or vice versa	Definition of Subtraction
$(x) x=x^{2}$	If you have either broken apart exponents or created an exponent by multiplying a number by itself	Definition of Exponents
	If you have replaced one statement with an equivalent one and no other property or definition works	Substitution Property

